考研数学二主要考察高等数学和线性代数两大部分,具体内容及备考要点如下:
一、高等数学(78%)
函数与极限
- 掌握函数连续性、可导性、可积性等性质
- 熟练运用洛必达法则、等价无穷小替换等求极限方法
导数与微分
- 理解导数的几何意义,掌握求导法则(如链式法则、乘积法则)
- 能用导数判断函数单调性、极值点,并解决相关应用问题
积分学
- 掌握定积分、不定积分的计算方法,熟练使用换元法、分部积分法
- 了解定积分的几何应用(如面积、体积计算)
微分方程
- 重点学习一阶线性微分方程的解法,初步接触常微分方程的基本概念
其他内容
- 不定积分不考积分表使用
- 空间解析几何与向量代数、无穷级数不考
二、线性代数(22%)
基础内容
- 行列式、矩阵运算(初等变换、方程组求解)
- 向量组的线性相关性、相似矩阵及二次型
重点章节
- 矩阵的特征值与特征向量(计算方法及应用)
- 二次型化为标准形的方法
三、备考建议
教材选择
- 高等数学:同济六版(不考第八章、含*号的微分方程)
- 线性代数:同济五版(重点掌握1-5章)
刷题巩固
- 使用《1800题》《真题卷》等资料,专项强化二重积分、偏导数等难点
- 建立错题本,定期回顾典型错误(如导数定义式漏写)
知识体系
- 结合汤家凤的《1800题》分章节练习,注意知识串联(如导数与积分的结合)
- 线代部分需结合高数知识,避免完全放弃高等数学复习
时间分配
- 基础阶段(6月前)以听课、刷基础题为主
- 强化阶段(6-9月)复盘知识点,提升解题速度与准确性
通过系统学习与针对性训练,可有效提升数二备考效率。